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HEAT TRANSFER DURING THE FLOW OF AN INCOMPRESSIBLE FLUID IN A
CIRCULAR TUBE, ALLOWING FOR AXIAL HEAT FLOW, WITH BOUNDARY
CONDITIONS OF THE FIRST AND SECOND KIND AT THE TUBE SURFACE
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An examination is made of heat transfer in a hydraulically stabilized
laminar stream and in a two-layer dynamic flow model.

1. Laminar Flow. In investigation of the heat trans-
fer process in the laminar, axisymmetric, hydrauli-
cally stabilized flow of an incompressible fluid, allow-
ing for axial heat conduction, conducted under the
assumption that the thermophysical properties of the
flowing medium are constant, we arrive at the follow-
ing differential equation in partial derivatives in cy-
lindrical coordinates:
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Since a parabolic distribution of velocity over the tube
section is characteristic [1] for laminar flow

w, = 2wl — (r/rg)®, (2)

Eq. (1) takes the following form:
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For convenience of subsequent calculation, we shall
write (3) in the form
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(where T = ty, — t is the temperature difference be-
tween the wall and the fluid) and we shall seek parti-
cular solutions of (4) in the form of the product
y(R)exp (— MZZ), with the following boundary conditions
of the first kind:

T(1, Z)=0, (5)

T (R, 0) =1, (RY (6)

(we shall examine the semi-infinite tube, 0 = Z <
< ),

We shall also suppose that the function to(Rz) admits
of representation in the form of a power series

Oy )
to(R) = 3, 0 Re
k=0 M

Thus, we arrive at the following problem of finding
the eigenvalues u and the eigenfunctions y:

@y Ly ape o pa
Rt R gp T FePe( —RIly =0,

y(1)=0. (7

Introducing the new variables £ = 2nR%, y =
=7 exp(—£2),wheré n* = u*Pe/4, we obtain the degener-
ate hypergeometric equation [2, 3]

§d§2 +( —-E)—d—g——aﬂ =0,
where
a=(n—m)2n, m= (p*-+p’Pe)/4.

The general solution of this equation will be the
function

n=AF(a, 1, EH—B[F(‘I, I, §Ing +

k—1
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Thus, the solution of (7) under the condition that it
is finite when R = 0 will be

y = AF(a, 1, 2nR*exp(—nR?.

The boundary condition with R = 1 gives the equa-
tion

F, |, 2n)=0, (8)

for determining the eigenvalues.
Solving (8) graphically, we obtain an infinitely in-
creasing series of positive eigenvalues

u; = ; (Pe).

Corresponding to these eigenvalues there are the
eigenfunctions

Fa; 1, 2n;R?exp(— n;R?).

Summing over the index i, we obtain the solution
of the problem

TR, 2)= Y,CF (@, 1, 21,RY) exp(—u2Z)exp (—nR?.(9)

i=0

We shall represent the functions F(a;, 1, ZnIRZ) and
exp(— nIRz) in the form of a series in powers of R?,
and multiply them. Then, from boundary condition (6),
we obtain a system for determining the coefficients

Ci
Ye=u0
i=0
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Table 1
Dependence of Cj on Pe
Pe Colte "Cu/to Ca/te
1 1.197 | —0.287 | 0.095
4 2,968 | —0.335 | 0.044
25 1.220 | —0.230{ 0.017
100 0.59 0.499 | —0.094

We shall denote the values of C; that we find by ct
Then the final solution of the problem (4) that satisfies
the boundary conditions (5) and (6) takes the form

TR, )=

=Y F a1, 2R exp(—p2 Z)exp(— mRY. (11)

Note. If we are given that the heat flux is constant,
4, = const, at the surface of the tube, then, having
taken any particular solution ty = gyry/f(4Z /Pe) +
+ R¥— (R¥4)]/\ of Eq. (4), satisfying the condition
8t(1,Z)/8R = —qy /A, we may seek a general solu-
tion of (4) in the form T =t — t;, where the solution
T must satisfy the homogeneous boundary condition
of the second kind 8T(1, Z)/8R = 0.

The solution of this problem is completely analo-
gous to that of the first. In this case the equation to
determine the eigenvalues is somewhat more com-
plicated, being

2aF (@4~ 1, 2, 2n) = F(a, 1, 2n). (12)

2. Two-Layer Dynamic Flow Model. In the solution
of the problem that has been formulated, as in the
first case, we shall assume that the thermophysical
properties of the flowing medium are constant, and
that a constant temperature is assigned at the surface
of our semi-infinite tube (0 = z < =),

We shall divide the whole stream into two layers:

a thermal laminar sublayer in which the velocity var-
ies according to a parabolic law, and a thermal layer
in which the velocity is constant. This model is quite
correct for fluids with Pr «< 1, e.g., for the liquid
metal heat transfer agents. We may represent the
mathematical description of the process as

o*T 1 JT *T
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for 0 = R = Ry, and for R; = R = 1—Eq. (4) with
boundary conditions (5) and (6), and the conditions
of cuntinuity of temperatures and their derivatives
at the interface of the layers

TR —0. H=T R, 40, 4.
AT(R —0. 74y _ dT(R, +0. 72
R dR

(14)
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We shall seek particular solutions of the problem
in the form of a product y(R) exp(—1*Z). Then to de-
termine the eigenvalues and the eigenfunctions we ob-
tain the ordinary differential equations

d% 1 dy Pe )
——d— —— 4t —ply=0, (15
et (PTQP‘)!/ (15)
for 0 = R =R, and Eq. (7) for R; < R = 1, at the re-
spective boundary conditions.
Equation (15) is the Bessel equation {2, 3], and its
general solution will be

p 9
y=Alu( Rl/u‘+%eiuz)+BYo(R ‘/u‘+—2eu')-

From the condition that the solution is finite when
R =0, it follows that B = 06, and thus we obtain

y=a, (R w+ ), o<rar, (9)
The solution of (7), as has been shown above, will
be the function
y ={CF (@ 1, 20RY) + D[F @ 1, 20R? In2nR? +

+2Ca+k— (2nR*)* 21( P 2 )”exp(—nRg).
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From the boundary condition when R = 1, it follows
that C = DS, where

k—1

s kpk 1 2 .
S:_[‘n2n+k2=ld+k—l B \Z:o(a_*_v_l_,_v)}/

/F(a, 1, 2n).

Table 2
Dependence of Nu; on Pe

Pe ‘ Ba (Pe) Nu,
1 1.421 4.121
1 0.916 3.822
2% 0.612 3.668

100 0.564 3.661

Therefore,

y=DL(R, u, Pe)exp(—nR?, R, <R:1, (17

where
L(R, p, Pe) =8F(a, 1, 2nR%) + F(a, 1, 2nR?) In2nR* +
@« k—1
(2nR ) 1 2
Choe — .
2 ‘ g(a v +v)

Subjecting solutions (16) and (17) to conditions (14),
we obtain the homogeneous system

AIO(R,l/ + e ) (18)

b 5w



JOURNAL OF ENGINEERING PHYSICS

—DL (R, p, Po) exp(—ﬁlgf?—&) =0,
Pe
1, (Rll/ll4+ —2e—p2)
dR o

. 5 (18)
—p [L (R, p, Pe)exp ( _ VP R)] = 0. (cont'd)

For the system (18) to have a non-zero solution, it
is necessary and sufficient that the determinant of the
system be zero. Denoting this by A and equating it
to zero, we obtain an equation to determine the eigen-
values u. From the equation A = 0 it may be seen
directly that the eigenvalues p are functions of R, and
Pe, i.e., puj= (R, Pe), i=0,1,2.

Substituting the values p; into (16) and (17), and
summing over the index i, we obtain the following
solution of the original problem:

TR, Z) =

Y AL Riyexp(—u22),0 < R<R
i=0

= (19)

ZDL(R i Pé) exp (— p? Z) exp (— n,RY), Ry <R <

i=0

where

l_l/ P’l L'

To determine the coefficients A; and Dj we may
use the condition at the inlet when Z = 0. Thus, for
example, for 0 = R = R;, expanding Ij(Rl;) in the
power series

N R
10<Rl,->—,§———~—22k i

and substituting its expansion into condition (6), we
obtain, by equating coefficients of identical powers
RZk', a system of linear equations to determine the A

i Al =
i=0

In a similar way, if we represent the function
L(R, u4, Pe) in the form of a power series in R?, which
may be done by use of the well-known expansion for
the degenerate hypergeometric function, and find the
product of the series for the functions L(R, uj, Pe) and
exp (—-njR?, we may obtain a system for determining
the coeificients Dj.

Substituting the values found for the coefficients A;
and Dj into (19), we obtain the final solution of our
problem.

Note. We may also solve the problem when there is
a boundary condition of the second kind at the tube sur-
face

(— 1R2% RN #P (0), £=0,1,2 ... (20)
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if T =t — ty, where t, is a particular solution, simi-
lar to that examined in the first case.

As an example we shall examine the heat given out
by a fluid flowing in a tube with a velocity correspond-
ing to laminar flow (the first case) with Pr «< 1. We
shall suppose that at the inlet to the tube the constant
temperature to(Rz) =ty is assigned. Then the system
(10) is simplified somewhat

i Ci = fo,

i=0

Yicint E( i ZL@ts) o p_ 9.,

=~ T (a) (1)t (e —s)!

Calculations show (Table 1) that with Pe = 1, 4, 25,
and 100 the coefficients C; diminish rapidly enough in
absolute value.

In addition, at large values of the longitudinal co-
ordinate (the asymptotic solution), only the first term
is retained in the solution. It is therefore sufficient to
find only the first eigenvalue.

We shall calculate the limiting value of Nusselt
number, Ny, according to [4], from the formula

2 9T (1, 2)
T oR

where T is the mean temperature, with regard to
enthalpy of the fluid at the given section.

It may be seen from Table 2 that Nu; decreases with
increase of Pe. When Pe — « we obtain the Nusselt
solution [5].

= [(Pe),

NOTATION:

Ty is the inside radius of the tube; w is the mean
flow rate velocity; A is the thermal conductivity; c
is the specific heat; v is the specific weight; R = r/r;
is the dimensionless current radius; Z = z/z, is the
dimensionless length; Pe is the Peclet number; F(a,
b, £) is the degenerate hypergeometric function; Ry =
= r,/1y is the dimensionless radius of the inside layer;
rg — r; is the thickness of the laminar sub-layer; Pr
is the Prandtl number; I'(@) is the gamma function;
Iy(z) is a cylindrical function of the first kind and zero
order; Yy(z) is the cylindrical function of the second
kind and zero order.
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